
Review:
TOLEAutomationClient Component
by Micha Somers

When you need to use the
features of an application,

such as MS Word or Excel, in your
own application, OLE automation
can be very useful: it allows your
program to control other applica-
tions and facilitates the exchange
of complex objects between your
program and other applications.

Unfortunately, the 16-bit version
of Delphi does not directly support
OLE automation. Delphi 2.0 on the
other hand does support OLE auto-
mation, but only for 32-bit applica-
tions. But for those who do not
immediately switch to Windows 95
there is still a way to use OLE auto-
mation. The TOLEAutomationClient
component will give you the neces-
sary support to integrate these
OLE objects into your own applica-
tions, giving them lots of extra
power. It’s a commercial compo-
nent, written and sold by a
developer in New Zealand.

First of all, I will describe what
OLE automation is and how it may
be used, and after that I will show
a simple example in which the
TOLEAutomationClient component
is used.

What Is OLE Automation?
OLE automation can be used for
data exchange between applica-
tions as well as for controlling
other applications. With OLE auto-
mation it is possible to exchange
complex information such as ob-
jects. It is even possible to set and
retrieve the properties of such an
object and call its methods, just as
you would do with properties and
methods of your own objects made
in Delphi.

In order to use OLE automation
there has to be an OLE automation
server. The OLE automation server
application exposes some objects
to OLE automation client applica-
tions. Objects of an OLE automat-
ion server application are not

automatically available to the OLE
automation client application.
Since Delphi is a compiled lan-
guage, before you can call a
method or refer to a property for
an object, you need to let Delphi
know that the object belongs to a
class that contains that method or
property. This is where the
TOLEAutomationClient component
gives support. When you use the
this component, an object called
TOleObject will become available.
You will need this object to make
so-called mirror classes.

Actually, you will have to build
your own copy of the structure of
the OLE objects you are going to
use, including the relations be-
tween them. The way to do that in
Delphi is to create a new unit and
to declare a new class (a mirror
class) with the required methods
and properties. This new class is
derived from the class TOleObject.

Which objects are exposed
depends on the OLE automation
server application. Word, for exam-
ple, offers just one object called
Word.Basic whereas Excel offers

several objects. A piece of Delphi
code using a Word object looks like
the example in Listing 1. The code
in Listing 2 (over the page) shows
the definition of the mirror class.

Although many operations can
be performed on this Word object,
Word is not the most interesting
example because it exposes just
one object. Excel 5.0, on the other
hand, offers a whole hierarchy of
objects. An example of a command
for changing the font size of a cell
in Excel is given by:

ExcelObj.ActiveWorkSheet.Cells(
 1, 1).Font.Size := 11;

In this example you can see that the
object ExcelObj consists of an ob-
ject called ActiveWorkSheet. This
ActiveWorkSheet has a function
method called Cells giving a Range
object as result. This object
consists of a Font object. Finally,
this Font object has a property
called Size.

In order to make it possible to
access the objects within an
object, you will have to declare

➤ Figure 1: Excel OLE automation client application

var
 WordOb: TWordObject;
begin
 WordOb := TWordObj.CreateObject(’word.basic’);
 WordOb.FileNew(’normal.dot’);
 WordOb.FileClose;
 WordOb.Release;
end;

➤ Listing 1

March 1996 The Delphi Magazine 33

so-called nested mirror classes.
The declaration of properties,
methods and nested mirror classes
might look like the example in
Listing 3.

OLE Automation Example
To illustrate the power of this
TOLEAutomationClient component I
have constructed a simple applica-
tion which opens an existing Excel
worksheet, gives Excel the com-
mand to compute the result of a
formula and place the result in a
cell. The worksheet will be saved
when the computation has been
finished. The application also gives
the user the possibility to change
the font style of the cell.

In order to see the changes to the
data, a TOleContainer component is
placed on the form and is linked to
the corresponding data (an exist-
ing Excel file). Figure 1 shows the
result of computing 0.5*PI().

Notice that the result in the
OleContainer is less accurate than
the result in the edit box. This is
because the TOLEAutomationClient
gives the exact internal result
whereas the OleContainer presents
the result the way it is shown by
the OLE server.

The complete source code with
the definition of the mirror classes
for Excel is included on the disk
with this issue, plus an executable
version of the example program. It
shows you how powerful this com-
ponent is when the mirror classes
have been defined. Of course, the
source code can only be used if you
have the TOLEAutomationClient
component. The executable works
if you have Excel installed on your
computer. By double clicking on
the OLE container at run-time you
can link the OLE container to the
file XLAUTOVB.XLS – see the
README.TXT file for more informa-
tion. This way you will see the
changes to the data immediately in
your OLE container.

Conclusions
Although it requires more effort to
use OLE automation with this
component than with the OLE auto-
mation facilities that Delphi 2.0
offers (in Delphi 2.0 you do not
have to declare mirror classes), it

type
 TExcelFont=class(TOleObject)
 private
 function GetSize: Integer;
 procedure SetSize(iSize: Integer);
 public
 property Size: Integer read GetSize write SetSize;
 end;

 TExcelRange=class(TOleObject)
 private
 FFont: TExcelFont;
 function GetFont: TExcelFont;
 public
 property Font: TExcelFont read GetFont write FFont;
 end;

 TExcelWorkSheet=class(TOleObject)
 public
 function Cells(rowIndex, columnIndex: Integer): TExcelRange;
 end;

 TExcelObj=class(TOleObject)
 private
 FActiveWorkSheet: TExcelWorkSheet;
 function GetActiveWorkSheet: TExcelWorkSheet;
 public
 property ActiveWorkSheet: TExcelWorkSheet read GetActiveWorkSheet
 write FActiveWorkSheet;
 end;

➤ Listing 3

TWordObject = class(TOleObject)
public
 procedure FileNew(Template: String; NewTemplate: Integer);
 procedure FileClose(CloseMode: Integer);
end;

procedure TWordObject.FileNew(Template: String; NewTemplate: Integer);
const
 pszName: PChar =
 ’123456789012345678901234567890123456789012345678901234567890’;
begin {create a file based on a specific template}
 SetOleMethodArg(’Integer’, NewTemplate);
 StrPCopy(pszName, Template);
 SetOleMethodArg(’PChar’, pszName);
 CallOleProc(’FileNew’);
end;

procedure TWordObject.FileClose(CloseMode: Integer);
begin {close the current file, with or without saving}
 SetOleMethodArg(’Integer’, CloseMode);
 CallOleProc(’FileClose’);
end;

➤ Listing 2

still remains an easy way to make
your applications more powerful.
Besides, Delphi 2.0 only supports
OLE automation for 32-bit applica-
tions, but TOLEAutomationClient
can be used for 16-bit applications.
So, for those of us who will con-
tinue developing 16-bit applica-
tions, this TOLEAutomationClient
component might be a very useful
tool.

The documentation explains
exactly and in a simple and under-
standable way how to declare and
implement the mirror classes.
Further, the documentation con-
tains some examples (Word, Excel)
which will help you a lot.

One disadvantage of using OLE
automation in your programs is
that it might require a lot of
memory, depending on the OLE
server application it uses. You
have to take care that all (nested)
objects are released correctly after
you have used them.

Another disadvantage is that
you cannot check at compile time
if your mirror class corresponds
with the OLE object. Only at run
time you can find out if your mirror
class definition corresponds or
not. Actually, this problem is
not specific for this component
because Delphi 2.0 has the same
problem.

34 The Delphi Magazine Issue 7

OLE automation is a powerful means of exchanging
complex objects between different applications. The
TOLEAutomationClient component has been developed
to ease the use of OLE automation within your 16-bit
Delphi programs by doing all the hard work for you.
Instead of programming low-level instructions, you can
spend your precious time on integrating powerful
applications with your own programs!

The component is sold direct via email
(raike@iconz.co.nz or CompuServe 100236,1656) and
for US$39.95 it can be yours. A number of software tool
retailers also stock the product, so it should be easy
enough to obtain. There are no runtime fees or
royalties. Because it is a native Delphi component,
there is no need to distribute additional files.

Micha Somers is a Knowledge Engineer from the
Netherlands developing Delphi, Pascal and C++
applications. You can contact him by email at
micha@bolesian.nl

Contact details for the developer
of TOLEAutomationClient:
 Email: sraike@iconz.co.nz
 CompuServe: 100236,1656
 Fax: +64-9-832-0088
 Mail: Software Developer (Raike), 66 Simpson Road,
 Swanson, Auckland 8, New Zealand

March 1996 The Delphi Magazine 35

	What is OLE Automation?
	OLE Automation Example
	Conclusion

